
Ioannis Lakkas

MSc in Data Science
Master Thesis

A Route Recommendation System
Based on Temporal Characteristics

October 2017
Athens, Greece

3

Acknowledgments

Many people have contributed significantly in order to make

this thesis possible. I am very grateful to every person’s assis-

tance, no matter how big or small. In particular, I would like to

thank:

My academic supervisor, Associate Professor Vasilios Vassa-

los, for excellent guidance and continuous support. All of our

discussions were constructive and advanced the quality of this

paper.

The company Beat, the employees Dimosthenis Kaponis and

Ilias Antoniou. They were by my side the whole time, patiently

listening and guiding me through every effort and hurdle. Ilias

in particular had to go through my endless theory questions

and practical suggestions to solve many issues. They’re always

positive attitude made this cooperation a pleasant endeavor.

Family friend Christi Grab, who as a talented writer, editor

and native English speaker, contributed in making the text so

much clearer and easier to read.

My partner in life Matina and my parents Pantelis and An-

droniki for reading my text, making suggestions and bearing

with me through the whole process.

Of course, every mistake present in this thesis is the sole re-

sponsibility of the author.

Ioannis Lakkas

4

5

Table of Contents

Acknowledgments..3
1. Introduction...7

1.1 The Problem...7
1.2 The Data...9
1.3 The Market...10
1.4 Approaching the Problem...11

2. Hidden Markov Model (HMM)..13
2.1 Training: Forward–Backward algorithm..........................17
2.2 Training: Viterbi algorithm...18
2.3 Future States Prediction...19

3. Utilizing HMMs in Destination Prediction.............................21
3.1 Method 1: Modeling the Route Sequence........................21
3.2 Method 2: Modeling the Daily Repeatability...................25
3.3 The Development of a Suggestion Metric........................29
3.4 The Steps of Data Processing...31
3.5 Accuracy vs Training Chain Length.................................34
3.6 Gaussian Mixture Models Effect on Suggestion Metric. .40

Practical Guide to the Produced Code..41
Bibliography...45

6

7

1. Introduction

This Master Thesis was realized during my MSc in Data Sci-

ence in Athens University of Economics and Business and was

made possible through cooperation with the software company

Beat (https://thebeat.co/), previously known as Taxibeat.

Beat was founded in 2011 as a startup company in Athens,

Greece. The aim of Beat was to provide an easy and fun way

of calling for a taxi through a smartphone application. The user

was able to pick a certain taxi driver for their ride, based on

previous user reviews. When the ride was completed, the user

could leave a personal review of the service.

1.1 The Problem

A user opens the smartphone application looking for a taxi

ride. The Beat application, using the current location of the po-

tential passenger, can suggest one or more termination points

for the ride. Then the user either selects one of the recom-

mended destinations, or ignores the recommendations and se-

lects a new destination, then completes the order. Alternatively,

the user can decide to abort the process, stop the order and exit

the application.

The process above happens every time a user is about to make

a new order for a taxi ride. How can such a system be built so

it can learn and suggest destinations to the user?

Utilizing the user’s history of rides, their current location and

time of day, it is being attempted to predict the destination.

https://thebeat.co/

8

Certain requirements must be met. The user should be rather

systematical about a certain route1 they follow, preferably both

in the time of the day and the days apart that a certain route oc-

curs.

Destination prediction is not some sort of wizardry; it follows

common sense rules. If a scholar studying a user’s history of

rides can with rational thinking predict the destination, then it

may be possible that the machine can do so, as well. In the

case where a scholar could not attempt a prediction, deeper

data mining, revealing behavioral and personal details of the

user, would be needed for the recommendation engine. This is

of course beyond this thesis.

A more concrete set of goals could be the ones below:

1. At least 85% prediction accuracy on suggested rides.

2. Suggest to the largest possible user base while main-

taining Rule 1.

3. Maybe explore more/alternative models and algorithms

to learn different kinds of patterns.

The system is responsible for updating tables that keep the

necessary information needed by the smartphone application to

display the suggestions.

1 See definition of a “user route” in page 10.

9

1.2 The Data

This Master Thesis was based on ride data of users of the Beat

service in Lima, Peru. The rides described in the data start in

the middle of January 2017 until the middle of July 2017 (six

months of 2017).

The data received from Beat was in a CSV2 file format and

was anonymized before being shared with the author. The user

ID was obfuscated, as were the geographical coordinates of

ride’s start and ending points. That made it impossible to iden-

tify any user in any way, such as finding someone’s home ad-

dress, names or other sensitive data. The above information is

considered private and is not distributed in any way.

The data was in table form. Each table row represents a single

ride of a given user at a given time. The describing features of

each ride are:

1. The User ID in hashed form

2. The Starting point Latitude and Longitude

3. The Destination Latitude and Longitude

4. The Timestamp (exact time and date) of the ride start

2 Comma Separated Values or CSV files with the ending “.csv”. A CSV file is a
simple text file that stores one table of data.

10

Definition of a “User Route”

The definition of a “User Route” is a triplet contain-

ing two coordinates3: starting point pair, destination

point pair and the user “ID.”

A user may have one hundred rides in their history but

only fifteen “user routes.”

The name “user route” implies that rides with the

same two coordinates occurring in two different users

will count as two different “user routes.” One for

User A and one for User B.

The data describe 13,260,820 records from 576,638 unique

users and 7,891,656 unique “user routes.”

1.3 The Market

The reason why Lima data was chosen among all the markets

Beat serves, is because Lima has an intricate interest as a mar-

ket. It is larger than the Athens’ market and less regulated, and

thus more flexible. Despite efforts to the contrary, Lima is still

considered to be lacking adequate public transportation, espe-

cially in remote areas of the city and off working hours. This is

a market where taxis flourish.

It should be noted that Lima’s governing body has not regu-

lated taxi fares, so there is no standard fare. This void is being

3 Geographical coordinate i.e. the pair of latitude and longitude

11

filled by companies following individual pricing policies. The

fare metering is passed to the application that in turn informs

the user about the cost of the ride.

The application, during the filling of the new ride form from

the user, has the ability to offer suggestions about the ride des-

tination. An upgrade in the suggestion capabilities of the appli-

cation can offer an advantage in markets such as Lima’s.

1.4 Approaching the Problem

Beat has already implemented a simpler destination recom-

mendation system, which analyzes repeating patterns on a

fixed weekly basis. Looking forward to advancing their recom-

mendation system, Beat has been developing and testing a sys-

tem that is planned to be put into production soon. The new

system uses the Hidden Markov Model, which has a re-

spectable suggestion metric accuracy of 85%. This Thesis as-

pires to be a continuation of Beat’s effort to design a destina-

tion recommendation system that will be both ideal for the

user and useful for Beat, as well.

This thesis recommendation system has been developed on the

basis of the Hidden Markov Model. Beat hasn’t contributed

code to this Thesis, and the produced source code was based

only on public and open source libraries of Python such as

Numpy, Pandas, Scikit-Learn, Scipy and HMMLearn.

Using HMM in this implementation instead of simpler tools to

check weekly patterns increases the capacity of prediction of

patterns, whose periods of repetition can vary from every day

to only few times a month.

12

13

2. Hidden Markov Model (HMM)

Hidden Markov Model or HMM is a member of the family of

Markov Models. In probability theory and statistics, Markov

Models are stochastic models that describe systems with the

following properties:

1. A system can be described by its state and the transition

from one state to another is stochastic

2. The jump probabilities from the current state to a new

one is only dependent on the current state. The past

states do not affect the jump in any way.

In this Thesis we will deal with systems that have a finite num-

ber of discrete states.

Let’s consider a set of four states that describe the state of the

weather in a certain location:

{Sunny, Cloudy, Rainy, Snowy}

Six consecutive days of summer could be:

Illustration 2.1, Markov Chain with the six day weather states

A record of some consecutive states of a Markov system is

named “Markov Chain.” Above we have a Markov Chain of

our system’s weather states.

It is rather obvious from the chain above that the state “sunny”

is most likely to transition to an also “sunny” state. The proba-

14

bilities that describe those kind of transitions are called “tran-

sition probabilities” and are represented in a matrix N x N

where Ν stands for the number of the possible states (in the ex-

ample is 4x4). Below there is an example:

From\To Sunny Cloudy Rainy Snowy

Sunny 0.80 0.12 0.07 0.01

Cloudy 0.45 0.30 0.24 0.01

Rainy 0.55 0.30 0.14 0.01

Snowy 0.60 0.15 0.24 0.01

Table 2.1, Transition probabilities matrix

In Table 2.1 we see that when the weather is “sunny,” it is

most likely to be “sunny” the next day, too. When it is “rainy,”

it is most likely that the next day will be “cloudy.”

In cases where we cannot observe the system states directly,

but we can observe states that scholastically relate to the states

of the system, we model the problem using the Hidden

Markov Model. This model is the tool we use to inference

those hidden system states. From now on the states that we can

observe will be named as the visible states, and the hidden to

us system states will be named as the hidden states.

Let’s assume there is a scientist that is working in an under-

ground but naturally ventilated facility. Due to their work they

are unable to directly observe the sky and the weather condi-

tions. However they are able to feel the temperature of the sur-

rounding air. Let’s say the states visible to the scientist are the

following:

15

{Hot, Chilly, Cold}

The states of the weather themselves can’t be observed, ie.

these are the hidden states now:

{Sunny, Cloudy, Rainy, Snowy}

By observing the visible states, they can infer the hidden states

of the weather conditions. For example the state “hot” will

most likely be observed when the weather is “sunny.” A six

day observations can be:

Illustration 2.2, HMM Chain with unknown hidden states of the weather. The
hidden states cannot be observed directly.

Assessing the observed states assumes that the most probable

weather states were:

Illustration 2.3, HMM Chain with the assumed weather states included in the
illustration. This depicts an accurately learned occurrence of hidden states.

In the above illustration, the hidden states were evaluated

100% successfully.

Hidden States

Visible States

16

Given a state of the system that is hidden to the observer, we

can define the probabilities of observing any visible state.

Those probabilities are defined as “emission probabilities” or

“output probabilities” and are represented in a matrix form.

The matrix is of N x Μ dimension where Ν is the number of

the hidden states of the system and M the number of the visi-

ble states (in the example 4x3).

Hidden\Visible Hot Chilly Cold

Sunny 0.95 0.04 0.01

Cloudy 0.45 0.50 0.05

Rainy 0.20 0.70 0.10

Snowy 0.01 0.14 0.85

Table 2.2, Emission probabilities matrix

Usually —as is the case in our problem— we are aware of a

chain of visible states, but we ignore the hidden states, the

transition probabilities and the emission probabilities.

To train the model, we use as an input a chain of consecutive

observed states (the visible states) and the model learns the

following:

1. Transition and Emission matrices

(2.1 Training: Forward–Backward algorithm)

2. The most probable chain of consecutive hidden states

that created the observed states

(2.2 Training: Viterbi algorithm)

Before the training begins, the user has to define the size of the

hidden state set. Only then the learning algorithm can start

17

learning the above two points. The assignment of the hidden

set size is based on our knowledge of the nature of the prob-

lem. Below we will further examine the process of training our

HMM model.

2.1 Training: Forward–Backward algorithm

The first step to train our model is to infer the Transition and

Emission matrices. Using the standard notation of literature,

we name the Transition matrix as A and the Emission matrix as

B.

From Daniel Ramage, Hidden Markov Models, Section Notes,

page 8, definition of Forward–Backward algorithm is:

We initialize A and B as random valid probabilities matrices

where A i 0=0 and B0 k=0 for i=1. . N and k=1.. M . N stands

for the number of hidden states and M as the number of visible

states. T stands for the number of items/observations in the

HMM chain where t=1.. T .

Repeat until convergence:

E-Step: Run the Forward and Backward algorithms to compute

α i and β i for i=1. . N . Then set:

γ t(i , j) :=αi(t)Αij Β j x t
β j(t+1)

M-Step: Re-estimate the maximum likelihood parameters as:

A ij :=
∑
t=1

T

γt(i , j)

∑
j=1

N

∑
t=1

T

γt (i , j)

18

B jk :=
∑
i=1

N

∑
t =1

T

1 {x t=υk}γ t(i , j)

∑
i=1

N

∑
t =1

T

γt (i , j)

2.2 Training: Viterbi algorithm

The second step in training our HMM model is to infer the

most probable sequence of hidden states given the Transition

and Emission matrices and a sequence of visible states of a

HMM chain.

From Daniel Jurafsky and James H. Martin, Speech and Lan-

guage Processing, Third Edition. Page 133:

function VITERBI (observations of len T, state-graph of len N) returns best-path

create a path probability matrix viterbi[N+2,T]

for each state s from 1 to N do ; initialization step

viterbi [s , 1]←α0 , s∗bs (o1)

backpointer [s , 1]←0

for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

viterbi [s , t]←
N

max
s'=1

viterbi [s ' , t−1]∗α s ' , s∗bs(ot)

backpointer [s , t]←
N

argmax
s '=1

viterbi[s ' , t−1]∗α s ' , s

viterbi [qF , T]←
N

max
s=1

viterbi [s ,T]∗α s , q F
; termination step

backpointer [qF , T]←
N

argmax
s=1

viterbi [s ,T]∗α s , q F
; termination step

return the backtrace path by following backpointers to states back in

time from backpointer [qF , T]

19

We used:

v t−1(i) the previous Viterbi path probability from the previous time

step

α ij the transition probability from previous state qi to current

state qj

b j(ot) the state observation likelihood of the observation symbol ot

given the current state j

2.3 Future States Prediction

After training our model we are interested in attempting to pre-

dict the next few states of our system (Illustration 2.4). Below

we will examine the steps we need to follow to predict one fu-

ture state of the system.

Illustration 2.4, Step1: HMM Chain with the hidden and visible states we want to
predict

Using the Transition matrix, we can see that the most probable

hidden state after “sunny” is also “sunny” (Illustration 2.5).

Illustration 2.5, Step 2: HMM Chain with the hidden state predicted

20

Using the Emission matrix we can see that the most probable

visible state of a “sunny” hidden state is “hot” (Illustration

2.6).

Illustration 2.6, Step 3: HMM Chain with the visible state predicted

To predict more states we repeat the steps above, as many

times, as the number of predictions needed.

21

3. Utilizing HMMs in Destination
Prediction

3.1 Method 1: Modeling the Route Sequence

The first attempt in modeling the problem using HMMs was

based on the idea that a user repeats a number of routes in a

rather circular fashion. As such, a user’s rides could be:

Source Destination Date (D/M) Time ID

Home Work Monday 4/9 08:00 1

Work Home Monday 4/9 18:00 2

Home Work Tuesday 5/9 08:00 1

Work Market Tuesday 5/9 18:00 3

Home Work Wednesday 6/9 08:00 1

Work Home Wednesday 6/9 18:00 2

Home Work Thursday 7/9 08:00 1

Work Home Thursday 7/9 18:00 2

Home Work Friday 8/9 08:00 1

Work Home Friday 8/9 18:00 2

Home Cinema Saturday 9/9 20:20 4

Cinema Home Saturday 9/9 23:45 5

Home Work Monday 11/9 08:00 1

Work Home Monday 11/9 18:00 2

Home Work Tuesday 12/9 08:00 1

Work Market Tuesday 12/9 18:00 3

Home Work Wednesday 13/9 08:00 1

Work Home Wednesday 13/9 18:00 2

Home Work Thursday 14/9 08:00 1

Work Home Thursday 14/9 18:00 2

Home Work Friday 15/9 08:00 1

Work Home Friday 15/9 18:00 2

Home Cinema Saturday 16/9 20:20 4

Cinema Home Saturday 16/9 23:45 5

Table 3.1, Fictional user data to illustrate a user with perfectly cyclical routes.
The labels “home,” “work,” “market” and “cinema” are used to make the table

22

simpler to the reader. In the recommendation engine, geographical coordinates
are used.

As it may be apparent to the reader, the data of Table 3.1

shows two identical weeks. Note: A week in this thesis will al-

ways be from Monday to Sunday. The data of Table 3.1 can be

predicted accurately with HMMs, a model representation of

the above data is:

Illustration 3.1, A HMM chain of one week’s rides. For clarity the second week
has not been included in the illustration. The route ID has been set as the visible
state. In reality, when you are training the model, all available data are used from
the last recorded date and back to a certain start date or a certain number of
days back.

In Illustration 3.1 we used as visible states the ID of each route

in the way the user executed them. The hidden states are un-

known to us. The hidden states attempt to roughly model

mathematicaly the decision making state of the user such as

personal obligations, work, family, friends, acquaintances,

hobbies and so on...

It the example above, with a sufficient amount of hidden states,

the model can perfectly learn all the sequences of the rides.

That way every next ride can be predicted.

The rides of the Table 3.1 make a complete circle every twelve

rides. By setting the hidden states of our model to twelve we

are certain that our model has sufficient complexity and can

learn the given patterns.

Hidden States
Meaning and size

23

Let’s now assume we’ve set the hidden states to just two, then

the training on the data above would assign a hidden state to

route ID 1 and a second hidden state to route ID 2. Training

that model results in a prediction of a route ID chain like the

following:

1→2→1→2→1→2→1→2→1→2→1→2→1→2→1→2...

instead of the correct one:

1→2→1→3→1→2→1→2→1→2→4→5→1→2→1→3...

The result above is based on the fact that the transition proba-

bilities of the hidden states one and two would follow a switch-

ing pattern so it can correctly learn the majority of the visible

states (it would only correctly learn nine of the twelve states of

the chain). Of course, with such a few hidden states, routes

three, four and five would not be learned, even if there were

part of a perfectly repeating pattern.

Unfortunately, this method (Method 1) is flawed at the level of

conception. It requires that users habitually execute routes in a

circular fashion. This, of course, doesn’t match reality. While a

user repeats usual rides such as routes to and from work, home

or leisure, there will always be a few rare and unmatched

routes. For example, a visit to a doctor or a distant relative.

Such ride histories are aperiodical or have a period that is

equal to the number of rides.

In those rather common cases the model attempts to learn the

whole chain, not just patterns or pieces of it. By learning the

whole chain, the result is that it fails to recognize any patterns.

This is a textbook example of overfitting. One modification

Hidden States size
and how the model
is affected

Model Issues

24

could be to remove routes that show very few rides every

month.

Another issue for consideration is the computational complex-

ity. Training a model with thirty or fifty or more hidden states

is substantially slower than a model with seven or fourteen

hidden states. The large number of hidden states is mandated

by the nature of the chains. Often the chains have lengths of

one hundred or more elements. Training such chains becomes

tedious and the model capacity of learning the data usually

shows poor performance. As a consequence, predictive quali-

ties are poor, too.

There’s also the element of time that this model totally ignores;

certain rides happen during certain time periods. If one morn-

ing the user does not follow their typical work route, he likely

won’t work at all that day, possibly due to illness or another

obligation. This issue makes these sequences not particularly

reliable and robust. Their predictive abilities are poor because

of that.

25

3.2 Method 2: Modeling the Daily
Repeatability

One way to avoid very long chains of route sequences and to

incorporate the temporal element of the data sequence is to

create a HMM chain for each user route. The visible state will

be whether a route was executed on a certain day.

Analyzing the data of Table 3.1, we find that the user follows

five unique routes, as shown in Table 3.2. Using the second

method of modeling the data, we create five HMM models,

one for each unique route.

ID From To

1 Home Work

2 Work Home

3 Work Market

4 Home Cinema

5 Cinema Home

Table 3.2, The user routes based on the Table 3.1.

To better illustrate the concept of the second method, we will

draw all of the above five routes into HMM chains below. The

visible states get the values 0 or 1, 0 stands for “didn’t follow

the route that day” while 1 for “followed the route that day.”

The illustrations below show only one week of data for clarity.

When coding chains like these, all training data for each route

would be included in the chains.

26

Illustration 3.2, Preview of the modeling of the route 1 “home – work.” It is
obvious from both Table 3.1 and the illustration that the route is being followed
only on working days.

Illustration 3.3, Preview of the modeling of the route 2 “work – home.” It is
obvious from both Table 3.1 and the illustration that the route is being followed
only on working days except Tuesdays. On Tuesdays, the user goes to the Market
after Work and then Home.

Illustration 3.4, Preview of the modeling of the route 3 “work – market.” It is
obvious from both Table 3.1 and the illustration that the route is being followed
only on Tuesdays.

Route:
“home – work”

Route:
“work – home”

Route:
“work – market”

27

Illustration 3.5, Preview of the modeling of the route 4 “home – cinema” and 5
“cinema – home.” It is obvious from both Table 3.1 and the illustration, the route
is being followed only on Saturdays.

Predicting the next item’s (the item next to the last of the

chain) hidden and visible states, can figure out if the next

day’s ride will be executed or not. This way, we learn all near

future dates a ride is likely to happen. Usually, a sufficient

number of hidden states for this model is seven. Most routes

with rather frequent rides show weekly patterns, or periods of

seven days, justifying the seven hidden states. Routes with less

frequent rides (routes that repeat every few weeks) certainly

need more hidden states to be learned.

The repeatability period of the data can be effectively infer-

enced using autocorrelation. Through this process we learn the

most dominant periodicity of the data. The most dominant pe-

riodicity of the data is then assigned as the number of the hid-

den states the HMM model has to learn.

The next step of the process is to learn the starting times of the

rides in every route. In order to learn the starting times, we

have to assess the route’s history of starting times. We expect

the predicted ride’s start time to fall into the same time frame

of the historical starting times. Finally, if a user opens the ap-

plication in one of the known starting points in the same time

Hidden States
Meaning and size

Autocorrelation

Routes:
“home – cinema”
“cinema – home”

Route Starting
Times

28

frame they usually take a ride in, then this route will be sug-

gested.

One crude way to define a time frame is to average the route’s

starting times and assess if the time in question belongs in the

historical data within one or more standard deviations.

This crude way works rather well in unimodal distributions of

route starting times.

Illustration 3.6, Typical unimodal route starting times,
starting ride hour vs rides starting in that hour

However, there are real user starting times that are multimodal,

a user may follow a route in the midday and in the evening but

never in the afternoon.

Illustration 3.7, Typical multimodal route starting times,
starting ride hour vs rides starting in that hour.

Using GMM each peak is modeled after a normal
distribution, displayed in different color

Such route times can be learned with the Gaussian Mixture

Models. In each time peak a normal distribution is assigned.

The parameters of the normal distributions are learned by the

Gaussian Mixture
Models (or GMM)
for learning Route
Starting Times

29

Gaussian Mixture Models algorithm. How GMM time analysis

affects the Suggestion Metric will follow in chapter 3.6 Gauss-

ian Mixture Models Effect on Suggestion Metric, in page 40.

3.3 The Development of a Suggestion Metric

Building on the paradigm of the second method of modeling

our data, Beat suggested a metric that incorporates the logic of

the problem we are trying to solve and judges the prediction

quality based on the behavior of real users.

Let’s consider a user that is currently in Place A. Let’s examine

a certain user route that starts from Place A and goes to Place

B. Let’s consider the three possible events:

• Event 0: The user does not get a taxi from Place A

(they close the app without any further actions)

• Event 1: The user does get a taxi ride from Place A to

Place B

• Event 2: The user gets a ride from Place A to a place

other than B — let’s call it “Place C”

So there are three possible events for a user, then there is the

Actual choice a user makes and the Predicted choice that the

prediction engine gave beforehand. Placing all the above in a

table and we get the following:

30

Actual Predict Outcome

0 0 NEUTRAL

1 0 NEUTRAL

2 0 NEUTRAL

0 1 NEUTRAL

1 1 SUCCESS

2 1 FAIL

0 2 NEUTRAL

1 2 FAIL

2 2 SUCCESS

Table 3.3, The three events according to the
Actual user choice and the considered Outcomes
in combination with the Predicted user choice.

The Table 3.3 can be summarized as:

• No prediction made

Outcome: Neutral

• There was a prediction but the user did nothing

Outcome: Neutral

(maybe the user had an obligation and didn’t follow the

route or used another means of transportation)

• The user followed the route suggested

Outcome: Success

• The user followed another route than the one suggested

Outcome: Fail

31

3.4 The Steps of Data Processing

Below I will try to roughly describe the steps of the data pro-

cessing pipeline from end to end, from the initial data loading

to the creation of the route recommendations.

1. Stage 1: CSV pre-process:

Read the input CSV with the following headers:
id_passenger,src_lat,src_lng,dest_lat,dest_lng,timestamp

Output a CSV with the following headers:
id_passenger,route,source,dest,timestamp,month,day,hour,weekday

2. Stage 2: Filter Stage 1 CSV routes and keep only those

with three or more rides, then save the data as Stage 2

CSV. Optionally, instead of saving the data into a single

large CSV output, break it into multiple Stage 2 CSVs.

The number of files being created is defined by the user

and the resulting CSVs have similar sizes.

3. Stage 3: Learn each Stage 2 CSV in a different CPU

process.

For example, if a server has eight CPU cores available, we create

eight Stage 2 CSVs and start eight python instances. Each in-

stance learns from one of the eight CSVs. Each python instance

produces a Route Recommendation CSV and a Suggestion Metric

CSV.

The Route Recommendation CSV has the following headers:
id_route,service,seasonality,seasonality_range,id_passenger,from_ad-

dress,from_lat,from_lng,to_address,to_lat,to_lng,from_tod,to_tod,fre-

quency,score,deleted_at,created_at,weeks_back

The Suggestion Metric CSV has the following headers:
id_passenger,route,exact_prediction,tb_metric,train_days,train_rides,

train_density,ipos

32

4. Stage 4: Read all Route Recommendation CSVs and

Suggestion Metric CSVs, and merge them into two large

CSV files.

5. Stage 5: Pass the final Route Recommendation CSV to

the Beat server infrastructure so the suggestions appear

in the smartphone application.

(Not planned to be part of this Thesis)

In this Thesis, the data of each route was split to 80% training

data and 20% test data. If, for example, a route had trips span-

ning seventy days or ten weeks, the first 56 days or eight

weeks would be training data and the following fourteen days

or two weeks would be test data. Routes with rides spanning

between two to nine weeks have the last week as test data,

routes with data spanning ten or more weeks have the last two

or more weeks as test data.

It should be noted that the Stage 3 (learning user routes from

Stage 2 CSVs) process can be interrupted at any time without

loss of previous calculations. The user of this thesis code can

restart the process to start learning again at a later time from

any given point.

The Stage 4 process can merge route recommendation parts

from both:

• Split output files due to parallel instances running

• Split output files due to user interrupts and continua-

tions

For example, a user of this thesis code has split the data to

eight parts so eight threads can work concurrently. When the

33

processes reach about 40%, the user of this code decides to in-

terrupt the process to devote the processing power elsewhere.

Afterwards, they continue the learning process from the spot

that was interrupted until completion. The result is sixteen

Route Recommendation CSVs and a Suggestion Metric CSV

that have to be merged into two CSV files. This is handled au-

tomatically by the Stage 4 process. This process removes the

duplicates and keeps only a single version, the version with the

best Suggestion Metric.

34

3.5 Accuracy vs Training Chain Length

Designing a machine learning system usually requires some

basic optimization that takes into consideration the nature of

the data. In our case, there are users that follow certain routes

for many months; for these routes we may have data that spans

over twenty weeks. We can certainly use all available data for

such routes and train our model with them. Training a route

with twenty weeks of data is certainly slower than training a

model with ten weeks of data or less. Can the length of the

training chain affect the accuracy of the suggestions?

Consistent users have data that follow repeating patterns.

Learning one instance of such patterns is enough to accurately

learn the user’s habits for that route. In reality, most users are

rather consistent over short periods of time, but as seasons

change, they modify their transportationional habits. Holidays

affect and change the users habits, too.

The ideal training data should contain the minimum amount of

data that contain the complete behavioral footprint of the user.

Recent data does hold a more accurate description of a user’s

behavior.

For example let’s consider a user route that has data spanning

twenty weeks. We decide to use the last two weeks as the test

set and for the training set make the two following cases:

35

1. Use All Data available:

Illustration 3.8, Twenty weeks of data. The eighteen weeks of training data are in
green, and the last two weeks of test data are in red. The numbers show the time
in weeks before present time.

2. Use only Recent Data:

Illustration 3.9, Twenty weeks of data. The eight weeks of training data are in
green and the last two weeks of test data are in red. White cells show data that
was discarded and not used in the learning process. The numbers show the time
in weeks before present time.

In the above two cases, the second case usually gives a better

Suggestion Metric.

Let’s now consider the Average Suggestion Metric of routes

spanning up to a certain number of weeks:

Illustration 3.10, The Average Suggestion Metric of routes that their training data
span up to a certain number of weeks. As we move from the left side of axis X to
the right, more and more routes are getting included in the calculation of the
Average Suggestion Metric. In the far right of the graph all available data of all
routes are being included in the calculation (training time of more than five
months). In the right, you see that the Average Suggestion Metric is just shy of
85%.

36

It is obvious from Illustration 3.10 that allowing longer train-

ing chains lowers the Average Suggestion Metric of the predic-

tions.

Let’s now consider the Average Suggestion Metric of routes

spanning exactly a certain number of weeks:

Illustration 3.11, The Average Suggestion Metric of routes with training data
spanning exactly a certain number of weeks.

Illustration 3.11 shows that training chains with lengths from

eight up to twenty weeks show a considerable dip in the accu-

racy.

To further explain Illustration 3.11 above, we will try to break

the data into multiple plots. We will again plot the Average

Suggestion Metric vs the Training Weeks as above, but filtered

for routes that ended in a certain time window of two weeks.

37

Training ended 1 or 2 weeks before July 16 Training ended 3 or 4 weeks before July 16

Training ended 5 or 6 weeks before July 16 Training ended 7 or 8 weeks before July 16

Training ended 9 or 10 weeks before July 16 Training ended 11 or 12 weeks before July 16

Training ended 13 or 14 weeks before July 16 Training ended 15 or 16 weeks before July 16

Training ended 17 or 18 weeks before July 16 Training ended 19 or 20 weeks before July 16

38

Training ended 21 or 22 weeks before July 16 Training ended 23 or 24 weeks before July 16

Illustration 3.12, Same visualization as Illustration 3.8 but only showing routes
that the training date ended by the number of weeks, mentioned in the caption.

The dates of Illustration 3.12 can be found in the table below:

Illustration 3.10 plot →
Week ending at ↓

1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 19-20 21-22 23-24

2017-07-16

2017-07-09 1

2017-07-02 2

2017-06-25 3 1

2017-06-18 4 2

2017-06-11 5 3 1

2017-06-04 6 4 2

2017-05-28 7 5 3 1

2017-05-21 8 6 4 2

2017-05-14 9 7 5 3 1

2017-05-07 10 8 6 4 2

2017-04-30 11 9 7 5 3 1

2017-04-23 12 10 8 6 4 2

2017-04-16 11 9 7 5 3 1

2017-04-09 12 10 8 6 4 2

2017-04-02 13 11 9 7 5 3 1

2017-03-26 14 12 10 8 6 4 2

2017-03-19 15 13 11 9 7 5 3 1

2017-03-12 16 14 12 10 8 6 4 2

2017-03-05 17 15 13 11 9 7 5 3 1

2017-02-26 18 16 14 12 10 8 6 4 2

2017-02-19 19 17 15 13 11 9 7 5 3 1

2017-02-12 20 18 16 14 12 10 8 6 4 2

2017-02-05 19 17 15 13 11 9 7 5 3 1

2017-01-29 20 18 16 14 12 10 8 6 4 2

2017-01-22 21 19 17 15 13 11 9 7 5 3

2017-01-15 22 20 18 16 14 12 10 8 6 4

Table 3.4, The dates of Illustration 3.12. The red dates mark the Easter period,
Sunday 2017-04-16 was Easter Sunday and 2017-04-09 was Palm Sunday.

By looking at both the Illustration 3.12 and the Table 3.4, we

can see that having short periods of training always results in

the best possible Suggestion Metric. Longer training periods

39

can have a smaller or larger detrimental impact on the Sugges-

tion Metric depending on the time period included. As it is vis-

ible, training weeks that contain the Easter season (shown in

the table in red) have a strong negative impact in the Sugges-

tion Metric. This is more pronounced in the longer training

sets. Even “15-16 weeks” and “17-18 weeks” plots are being

adversely affected due to the test set lying during the holidays.

Plots unaffected by Easter (in January, February, May, June

and July) show good a Suggestion Metric. Up to seven weeks

of training seems to be the sweet-spot in acquiring a good Sug-

gestion Metric result.

Below are the performance results of the proposed suggestion

engine:

Run Avg
Suggestion
Metric

Route
Recommendations

Routes with Four
or More Rides

Percent of
Routes
Suggested

Total
Routes

Six Months, All
weeks available in
Training

84.6% 181,537 450,270 40% 7,891,656

Six Months, Up to
7 weeks in
Training

90.4% 157,691 450,270 35% 7,891,656

Last 70 days of
data, All weeks
available in
Training

91.4% 117,658 201,734 58% 3,848,178

Table 3.5, Performance results for the different sets of training lengths.

40

3.6 Gaussian Mixture Models Efect on
Suggestion Metric

Building on the introduction of Gaussian Mixture Models us-

age in learning the user’s typical route times (chapter 3.2

Method 2: Modeling the Daily Repeatability, page 25), we

present the performance results.

Run Avg
Suggestion
Metric

Route
Recommendations

Routes with
Four or More
Rides

Percent of
Routes
Suggested

Total
Routes

Six Months, Up to 7
weeks of Training,
GMM time analysis
95% confidence
interval in each
normal of the model

90.4% 157,691 450,270 35% 7,891,656

Six Months, Up to 7
weeks of Training,
assuming times
follow normal
deviation 95%
confidence interval

89.8% 131,661 450,270 29% 7,891,656

Table 3.6, Performance results with and without Gaussian Mixture Models
starting times analysis.

It is obvious that the advantage offered by the GMM starting

time analysis is subtle but noticeable. The Average Suggestion

Metric has less than a one percent advantage, but the routes

suggested increased by about twenty percent over the simple

model.

41

Practical Guide to the Produced
Code

The core files of the code can be narrowed down to the follow-

ing:

1. dataset_preprocess_stage1.py

2. dataset_preprocess_stage2.py

3. libtaxibeat.py

4. automated_hmm_taxibeat.py

5. qt5_hmm_taxibeat.py

6. libvisualize.py

7. results_exploration_stage4.py

8. results_exploration_stage4_2.py

Files one and two implement the data pre-processing Stages

one and two of the pipeline (see page 31).

File three, “libtaxibeat.py”, incorporates core routines for cal-

culations such as:

• Autocorrelation

• Gaussian Mixture Model analysis of route start times

• Selection of test and training dates

• Creation of Training and Test dataframes

• Implementation of the Suggestion Metric

• HMM model check routines

42

File four, “automated_hmm_taxibeat.py” implements a batch

version of the destination recommendation system, uses “lib-

taxibeat.py” for the calculations. Outputs one CSV file of des-

tination suggestions and one CSV file containing the learning

performance report (more in page 31).

File five, “qt5_hmm_taxibeat.py” implements a GUI version of

the destination recommendation system, uses “libtaxibeat.py”

for the calculations and “libvisualize.py” for the data plotting.

Based on Qt5 UI toolkit, the GUI version was developed be-

fore the batch version and was employed in an effort to

quickly and effectively develop the learning engine while iden-

tifying and ironing out any bugs quickly.

Illustration 3.13, “qt5_hmm_taxibeat.py”, a GUI version of the
destination recommendation system, based on Qt5 UI toolkit.

Working in both Windows and Linux OS.

File six, “libvisualize.py”, implements routines that preview

matplotlib plot objects into the Qt5 interface. Using the above

library, two visualizations are being created:

• Prediction vs Test data plot

43

• Start time barplot.

File seven, “results_exploration_stage4.py”, post-processes the

output CSVs from multiple runs of “automated_hmm_tax-

ibeat.py”, combining them into just two CSV files. One CSV

file of destination suggestions and one CSV file containing the

learning performance report (more in page 31)

File eight, “results_exploration_stage4_2.py”, reads route data

and adds columns of statistical data into the performance re-

port made by “results_exploration_stage4.py”.

44

45

Bibliography

Books:

1. Daniel Jurafsky and James H. Martin, Speech and Language Pro-

cessing, Prentice Hall, Englewood Cliffs, New Jersey, 2000 (first

ed) and 2017 (third ed)

2. Daniel Ramage, Hidden Markov Models Fundamentals CS229

Section Notes, Stanford University, December 2007

Papers:

1. Zoubin Ghahramani, “An Introduction to Hidden Markov Models

and Bayesian Networks,” International Journal of Pattern Recog-

nition and Artificial Intelligence, 15(1):9-42, December 2007

Presentations:

1. Zoubin Ghahramani, Jurgen van Gael, Yee Whye Teh, Yunus

Saatci, Nonparametric Bayesian times series models: infinite

HMMs and beyond, University of Cambridge

2. Zoubin Ghahramani, Matt Beal, Jurgen van Gael, Yunus Saatci,

Tom Stepleton, Yee Whye Teh, Bayesian Hidden Markov Models

and Extensions, Department of Engineering, University of Cam-

bridge

	Acknowledgments
	1. Introduction
	1.1 The Problem
	1.2 The Data
	Definition of a “User Route”

	1.3 The Market
	1.4 Approaching the Problem

	2. Hidden Markov Model (HMM)
	2.1 Training: Forward–Backward algorithm
	2.2 Training: Viterbi algorithm
	2.3 Future States Prediction

	3. Utilizing HMMs in Destination Prediction
	3.1 Method 1: Modeling the Route Sequence
	3.2 Method 2: Modeling the Daily Repeatability
	3.3 The Development of a Suggestion Metric
	3.4 The Steps of Data Processing
	3.5 Accuracy vs Training Chain Length
	3.6 Gaussian Mixture Models Effect on Suggestion Metric

	Practical Guide to the Produced Code
	Bibliography

